Amendment No. 2

06.12.2018

Sub: Amendment to the Bidding Document

Ref.: Notice Inviting Bid ref. HITES/PCD/NCI-AIIMS/36/18-19 dated 26.09.2018 read with its Amendment no. 1 dated 19.11.18

The following changes have been authorised and are being incorporated in the above referred Bidding Document.

SECTION - VII

TECHNICAL SPECIFICATION AND GENERAL POINTS

A. TECHNICAL SPECIFICATION:

Item No. 2 (Rfx/ Event number 3000003420)

IORT Machine (Electron Based)

S1. No.	Ref. to the Bidding Document	Existing Tender Specification	Amended as
1	Point 1.9 page 62	The Dose per pulse shall be a value such that quality assurance (QA) procedures are simple to implement and are similar to those used in conventional radiotherapy treatment.	Deleted
2	Point 1.11 Page 62	Dual (primary and backup) dosimetry system for measuring radiation output, based on vented ion chambers with automatic pressure and temperature compensation	Dual (primary and backup) dosimetry system for measuring radiation output, based on vented ion chambers with temperature compensation.
3	Point 1.15 Page 62	The treatment head of the equipment should have at least 5 degrees of freedom	The equipment should have at least 5 degrees of freedom
4	Point 1.21 page 63	Range of motion and treatment flexibility:- The treatment head shall have the ability to move in 5 axes with following minimum ranges:- Gantry: +/- 45 degrees Tilt: +20/-10 degrees Vertical: 30 cm total range	The treatment equipment should have 5 degree of motion for facilitating treatment

S1. No.	Ref. to the Bidding Document	Existing Tender Specification	Amended as
5	Point 2.1 Page 63	This software should be able to execute stability QA;report, print, and store machine calibration results, perform quality checks and calculate the number of monitor units (MU) required to administer a prescribed dose at a specified depth with all energies and all types of applicators.	Deleted
6	Point 2.3 Page 63	Dose planning with the capability to mix different electron energies	Deleted
7	Point 2.5 Page 63	The software shall be DICOM 3.0 Compliant and HL 7 compliant.	Deleted
8	Point 2.6 Page 63	The software shall track and record daily QA sessions including: - Beam energy and output statistics - Functionality Tests - Interlocks	The software shall track and record daily QA sessions.
9	Point 3.8 Page 63	It should have at least two 19" or more TFT flat screen LCD colour monitor for display of 1024 x 1024 matrix or more.	The system should have 19 " or more TFT flat screen LCD colour monitor for display of 1024 x 1024 matrix or more.
10	Point 3.9 Page 63	Computer CPU systems should be running on a high-end workstation platform with UNIX/LINUX/ Window of latest configuration. RAM size must be at least 8 GB or better	Computer CPU systems should be running on a high-end workstation platform with latest configuration. RAM size must be at least 8 GB or better
11	Point 5 , Page 64	 Dosimetry Equipment 1. Vendor must provide relevant QA device, Phantom and dosimetry equipment required for QA and dosimetric calibration. a) PDA :- Photo Diode Array: 5 diodes positioned orthogonally to 	Dosimetry Equipment Vendor must provide relevant QA device, Phantom and dosimetry equipment required as follows; (i) Absolute Dosimetry Systems: Vendor should provide 3D mini water phantom. One water-proof
		each other to measure the radiation of the miniaturized accelerator. The objective of this test is to assure the isotropy of the emitted beam.b) PAICH :- Probe Adjuster Ion	cylinderical chamber and parallel plate chamber with suitable eletrometer for output measurements as per IAEA TRS- 398 protocol (ii) Relative dosimetry Systems:
		Chamber Holder: the output can be checked. An ion chamber is mounted onto the probe adjuster	Vendor should provide radiochromic films (two pockets of two different sizes) suitable for

S1. No.	Ref. to the Bidding Document	Existing Tender Specification	Amended as
		in such a way that the ion chamber window sits right above the tip of the miniaturized accelerator to enable for treatment planning until a coefficient has been computed	 IORT depth dose measurements with suitable latest model flatbed film scanner system in addition to the system-specific dosimetric equipments and QA tools. (iii) One solid water phantom for daily QA checks. (iv) one specially designed water equivalant cylidercical phantom which is insertable with electron applicator for output factor measurements.
12	Point 9.1 Page 65	The system should be integrated and connected to CT-Simulator, MR/PET-CT, PET-MRI and Treatment planning station of Radiotherapy department, etc.	DELETED

Item No. 3 (Rfx/ Event number 3000003421)

IORT Machine (X-Ray Based)

S1. No.	Ref. to the Bidding document	Existing Tender Specification	Amended as
1	Point 1.1 Page 66	The machine should be dedicated Mobile Photon beam LINAC. It should have a point-source type x- ray emission, Spherical dose distribution around the isocentre of the miniaturized accelerator, Steep dose gradient (approx. 1/r3) in water (soft tissue equivalent).Positional accuracy of delivered dose +/- 1 mm.	The machine should be dedicated Mobile X-ray based IORT system. It should have a point-source type x-ray emission, Spherical dose distribution around the isocentre of the miniaturized accelerator, Steep dose gradient (approx. 1/r3) in water (soft tissue equivalent).Positional accuracy of delivered dose +/- 1 mm.
2	Point 1.2 Page 66	The LINAC should have mounted on mobile stand/mounting for LINAC having multiple axis movement.	The system should have mounted on mobile stand and easily movable from room to room facilitating all treatments.
3	Pont 1.5 Page 66	The equipment should have positional accuracy of delivered dose +/- 1 mm	Either equipment positioing or emitting source point accuracy should be of <u>+</u> 1 mm

	I		
4	Point 1.7	It should have inbuilt internal	It should have either inbuilt
	Page 66	radiation monitor to enable real	internal radiation monitor or any
		time measurement of dose	alternative mechanism to ensure
	D • • 1 0	delivered.	the precise dose delivery.
5	Point 1.9	High precision water phantom with	The System should come with
	Page 66	< 100 µm accuracy for	the proper QA phantom to allow
		independent dose verification	the site tech personnel to
		should be included in the offer.	execute the proper dosimetric
	5.1.1.1.1		verification tests.
6	Point 1.11	The equipment should be in use	The equipment should be in use
	page 66	globally for wide range of	globally for wide range of
		indications (Breast Cancer,	indications for IORT.
		Endometrial Cancer, Lung	
		Cancer, Soft tissue Sarcoma,	
		Skin cancer etc.).	
7	Clause. 5.1	Equipment standard and safety	The model offered by the vendor
	Page No 67	should comply with the national	may be of either AERB type
		regulatory AERB guidelines and	approval/NOC approved or
		offered model should have AERB	AERB type approval/
	~ ~ ~ ~	type approval and NOC.	NOCpending.
8	Clause. 7.5	Factory trained service	Factory trained service
	Page No 68	engineer/Application specialists	engineer/Application specialists
		should be available in Delhi-NCR	should be available in Delhi-NCR
		to look after the installation and	to look after the installation and
		maintenance of the system without	maintenance of the system without
		patient treatment interruption	patient treatment interruption.
			Supporting certificate should be
	<u> </u>		furnished.
9	Clause. 8.1	The system should be integrated	The system should be integrated
	Page No 68	and connected to CT-Simulator,	and connected to imaging system
		MRI/PET-CT, PET-MRI and	and Treatment planning system.
		Treatment planning station of	
		Radiotherapy department, etc.	
10	BOQ	Number of x-ray tube required for	Number of x-ray tube required for
	Column D	treatment of 1000 Patients (for Bid	treatment of 1000 Patients (for Bid
	Page No 69	ranking only)*	ranking only)*. If the system uses,
			disposable x-ray tube along with
			required consumables for
			treatment, the following number
			of X-ray tubes with cooling tube
			and other consumable as below.
			Breast-500, Gynecological-300
			and skin-200.

Existing Specification (Ref: *Point 4, Page 67*):

4. Vendor must provide relevant QA device, Phantom and dosimetry equipment required for QA and dosimetric calibration.

Amended as:

Dosimetry, QA and Safety Measurement Equipments:

Vendor must provide relevant dosimetry equipments and QA devices, Phantom required for QA and dosimetric calibration as follows;

- 1. The system which uses non-disposable x-ray tube should provide the following dosimetry and QA equipments.
- (i) Absolute Dosimetry Systems: Vendor should provide specially designed water phantom with soft x-ray small volume parallel plate chamber with suitable holder and eletrometer for output measurements as per AAPMTG-61 Protocol.
- (ii) Relative dosimetry Systems: Vendor should provide radiochromic films (two pockets of two different sizes) suitable for IORT depth dose, profiles measurements along with suitable latest model flatbed film scanner system in addition to the system-specific dosimetric equipments/QA tools.
- 2. The system which uses disposable x-ray tube should provide the following dosimetry and QA equipments:
- (i) Absolute Dosimetry Systems: vendor should provide in-built or standalone calibrated Well-Type chamber with suitable electrometer for source strength or output calibration as per AAPM TG-43 protocol
- (ii) Relative dosimetry Systems: Vendor should provide radiochromic films (two pockets of two different sizes) suitable for IORT depth dose measurements with suitable latest model flatbed film scanner system in addition to the system-specific dosimetric equipments/QA tools.
- 3. Vendor should provide the mobile micro MOSFET wireless dosimetry system with suitable software and hardware reader for invivo dose verfication during IORT treatement.
- 4. Vendor should provide the latest model one survey meter suitable for measuring lowenergy x-rays and its contamination leakage measurements.
- 5. Vendor should provide System specific periodic quality assurance phantom and devices suitable for their systems.

Item No. 4 (Rfx/ Event number 3000003422)

Mobile CT Scanner for IORT

Ref. to the Bidding document	Existing Tender Specification	Amended as
Para 1.8 Page 70	The system should have an Image reconstruction speed of at least 16 images per sec or more	The system should have an Image reconstruction speed of at least 24 images per sec or more.

All other contents of the Bidding Document including terms & conditions remain unaltered.